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Preface

This is a collection of abstracts of some of the talks at the Hamiltonian
Graph Theory Workshop, held in Pavlov (Czech Republic) on February 6–9,
2008, to honor the sixtieth birthday of Professor Zdeněk Ryjáček. We hope
that all the participants — especially Zdeněk — enjoyed these four days of
interesting talks in the friendly ambience of Hotel Pavlov as much as we did.

The workshop was made possible by the support of the following institu-
tions, which is gratefully acknowledged:

• Department of Mathematics, University of West Bohemia, Pilsen (sup-
port from Research Plan MSM 4977751301 of the Czech Ministry of
Education is gratefully acknowledged),

• Institute for Theoretical Computer Science (supported by Czech Min-
istry of Education as project 1M0545),

• Department of Applied Mathematics, Charles University, Prague,

• Union of Czech Mathematicians and Physicists.

We thank all the participants for accepting the invitation to come and
contribute to the atmosphere of this event.

Roman Čada
Přemysl Holub
Tomáš Kaiser
Roman Kužel
Jakub Teska
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On labelings of disconnected graphs

Martin Bača

TU Košice
martin.baca@tuke.sk

A labeling of a graph is any map that carries some set of graph elements
to numbers (usually to the positive integers). If the domain is the vertex-
set or the edge-set, the labelings are called vertex labelings or edge labelings,
respectively. Moreover, if the domain is V (G) ∪ E(G) then the labeling is
called total labeling.

Let f be a vertex labeling of a graph G, we define the edge-weight of
uv ∈ E(G) to be w(uv) = f(u) + f(v). If f is a total labeling, then the
edge-weight of uv is w(uv) = f(u) + f(uv) + f(v).

An (a, d)-edge-antimagic total labeling on a graph with p vertices and
q edges is defined as a one-to-one map taking the vertices and edges onto
the integers 1, 2, . . . , p + q with the property that the edge-weights form an
arithmetic sequence starting from a and having a common difference d. Such
a labeling is called super if the smallest possible labels appear on the vertices.

A graceful labeling of a (p, q) graphG is an injection h : V (G)→ {1, 2, . . . ,
q + 1} such that, when each edge uv is assigned the label |h(u)− h(v)|, the
resulting edge labels are distinct. When the graceful labeling h has the
property that there exists an integer λ such that for each edge uv either
h(u) ≤ λ < h(v) or h(v) ≤ λ < h(u), h is called an α-labeling.

We use the connection between α-labelings and edge-antimagic labelings
for determining a super (a, d)-edge-antimagic total labelings of disconnected
graphs.

3



Colouring and distinguishing edges by
total labellings

Stephan Brandt

TU Ilmenau
stephan.brandt@tu-ilmenau.de

(joint work with Krist́ına Budajová, Jozef Mǐskuf, Dieter Rautenbach and
Michael Stiebitz)

A total k-labelling of a graph G = (V,E) is a function f : V ∪ E →
{1, 2, . . . , k}. The weight of an edge uv is w(uv) = f(u) + f(uv) + f(v). We
investigate edge-distinguishing total k-labellings, where all edge weights must
be different, and edge-colouring total k-labellings, where the edge weights of
incident edges must be different, i.e. they determine a proper edge colouring
of G. In both cases we try to minimize k.

Let G be a graph with m edges and maximum degree ∆. In the case of
edge-distinguishing total labellings, our main result is that the natural lower
bound

k ≥
⌈

max

{
m+ 2

3
,
∆ + 1

2

}⌉
is tight for all graphs with m ≥ 111000∆. Ivančo and Jendrol’ conjecture
that the bound is tight for all G 6= K5.

In the case of edge-colouring total labellings the natural lower bound is
k ≥ d∆+1

2
e. This lower bound cannot be tight in general, but we are not

aware of any graph, where k must exceed the lower bound by more than one.
Our main result here is an upper bound of k ≤ ∆

2
+ O(

√
∆ log ∆). In both

cases we employ a mixture of graph theoretic and probabilistic methods.
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Sharp upper bounds for the minimum number
of components of 2-factors in claw-free graphs

Hajo Broersma

Durham University
hajo.broersma@durham.ac.uk

(joint work with Daniël Paulusma and Kiyoshi Yoshimoto)

We first note that for claw-free graphs on n vertices with minimum degree
δ = 2 or δ = 3 that have a 2-factor we can not do better than the trivial upper
bound n/3 on the number of components of a 2-factor. Hence, in order to
get a nontrivial result it is natural to consider claw-free graphs with δ ≥ 4.
Let G be a non-hamiltonian claw-free graph on n vertices with minimum
degree δ. We prove the following results, thereby improving known results
due to Faudree et al. and to Gould & Jacobson. If δ = 4, then G has a
2-factor with at most (5n− 14)/18 components, unless G belongs to a finite
class of exceptional graphs. If δ ≥ 5, then G has a 2-factor with at most
(n−3)/(δ−1) components. These bounds are best possible in the sense that
we cannot replace 5/18 by a smaller quotient and we cannot replace δ− 1 by
δ.
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Forbidden subgraphs, Hamiltonian properties,
and 2-factors in graphs

Ralph Faudree

University of Memphis
rfaudree@cc.memphis.edu

A survey of results on families of connected forbidden subgraphs that im-
ply various hamiltonian type properties will be presented. Some correspond-
ing results on the existence of two-factors will also be presented. Applications
of the Ryjáček closure to results of this type will be featured. Open problems
will be discussed.
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Application of linear algebra for the existence
of homomorphisms with local constraints

Jǐŕı Fiala

Univerzita Karlova, Praha
fiala@kam.mff.cuni.cz

(joint work with Daniël Paulusma and Jan Arne Telle)

We explore the connection between locally constrained graph homomor-
phisms and degree matrices arising from an equitable partition of a graph.
We extend the well-known connection between degree refinement matrices of
graphs and locally bijective graph homomorphisms to locally injective and
locally surjective homomorphisms by showing that also these latter types of
homomorphisms impose a quasiorder on degree matrices and a partial or-
der on degree refinement matrices. Computing the degree refinement matrix
of a graph is easy, and an algorithm deciding comparability of two matri-
ces in one of these partial orders could be used as a heuristic for deciding
whether a graph G allows a homomorphism of the given type to H. By
using elementary properties of systems of linear equations we show for local
surjectivity and injectivity that the problem of matrix comparability belongs
to the complexity class NP.
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On a problem from the ancient times of
Zdenek’s youth

Dalibor Fronček

University of Minnesota Duluth
dalibor@d.umn.edu

Let G be a simple finite graph and x, y be two independent (i.e., non-
adjacent) vertices. By N i

G(x, y) we denote the subgraph of G induced by the
set of all vertices adjacent to at least one of x, y.

G is a graph with constant neighborhood of two independent vertices if
there exists a graph H such that N i

G(x, y) is isomorphic to H for every pair
of independent vertices x, y. It is known (see [1]) that if G has this property,
then diam(G) ≤ 3. On the other hand, no such graph with diam(G) = 3 is
known. Therefore, we may ask the following question.

Problem. Does there exist a graph with constant neighborhood of two inde-
pendent vertices of diameter 3?

It is easy to show the following:

Observation. Let G be a graph with constant neighborhood of two indepen-
dent vertices and U be the set of all vertices with eccentricity 3. Then |U | ≥ 3.
Also, G cannot contain an induced cycle of length 6 or more.

References

[1] D. Froncek, Graphs with constant neighbourhoods of two independent
vertices, Quart. Journ. of Math. Oxford 43 (1992), 313–317.
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Seidel’s switching

Jan Kratochv́ıl

Univerzita Karlova, Praha
honza@kam.mff.cuni.cz

Let G be a graph. Seidel’s switching of a vertex v ∈ VG results in a graph
called S(G, v) whose vertex set is the same as of G and the edge set is the
symmetric difference of EG and the full star centered in v, i.e.,

VS(G,v) = VG

ES(G,v) = (EG \ {xv : x ∈ VG, v ∈ EG}) ∪ {xv : x ∈ VG, x 6= v, xv 6∈ EG}.

Graphs G and H are called switching equivalent if G can be transformed
into a graph isomorphic to H by a sequence of Seidel’s switches. It can be
easily seen that only the parity of the number of times a particular vertex is
switched matters. Denote A ⊆ VG the set of vertices which are switched odd
number of times. The resulting switched graph is then

S(G,A) = (VG, EG ÷ {xy : x ∈ A, y ∈ VG \ A}),

and G is switching equivalent to H if and only if H is isomorphic to S(G,A)
for some A ⊆ VG (÷ denoting the symmetric difference of sets).

The concept of Seidel’s switching was introduced by the Dutch mathe-
matician J. J. Seidel in connection with symmetric structures, often of alge-
braic flavor, such as systems of equiangular lines, strongly regular graphs, or
the so called two-graphs. For more structural properties of two-graphs, cf.
[6, 7, 8].

Colbourn and Corneil [1] (and independently but later Kratochvil et al.
[4]) proved that deciding if two graphs are switching equivalent is an isomor-
phism complete problem. Several authors asked the question of how difficult
it is to decide if a given graph is switching equivalent to a graph having some
prescribed property (this property becomes the parameter of the problem).
So far the only nontrivial switching NP-complete problem known is switching
to a regular graph [4, 5].

An area with irritating open problems is avoiding forbidden induced sub-
graphs. It is still an open problem if there exists a graph H such that
switching to H-free graphs is NP-complete. Here H is a fixed parameter.
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The complexity is known only for a few graphs H and in all cases the ques-
tion turns out polynomially solvable. It is proved in [4] that deciding if a
given input graph can be switched to a P3-free graph (i.e., a graph not con-
taining and induced copy of the path on 3 vertices) is polynomially solvable.
This means deciding if the input graph is switching equivalent to the disjoint
union of complete graphs. R. Hayward [2] showed that deciding switching
equivalence to triangle-free graphs is also polynomial.

Another case is added in a paper under preparation [3]. This result is
particularly suitable to be presented in the Ryjáček volume, and we wish to
add the following theorem to the pile of birthday presents:

Theorem. It is polynomial to decide if an input graphs is switching equiva-
lent to a claw-free graph.
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[1] C. J. Colbourn and D. G. Corneil, On deciding switching equivalence
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Combin. Th. Ser. B 66 (1996), 247–262.

[3] E. Jeĺınková, J. Kratochv́ıl, Switching to H-free graphs, in preparation.
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Some Ramsey type problems surrounding
claw-free graphs

Jaroslav Nešetřil

Univerzita Karlova, Praha
nesetril@kam.mff.cuni.cz

Let G,H be finite graphs. We say that H is vertex- (or edge-) Ramsey
for G if for every partition A1 ∪ A2 of vertices V (H) (or edges E(H)) there
exists an inducd subgraph G′ of H such that V (G′) ⊂ Ai (or E(G′) ⊂ Ai)
for either i = 1 or i = 2.

In the style of Erdős-Rado partiton arrow [1, 2] this is denoted by H −→
(G)1

2 (or H −→ (G)2
2). One more definition (a key one which took a long

time to crystalize, see e.g. [2]): Let K be a class of finite graphs. We say
that K is vertex-Ramsey (or edge-Ramsey) if for every G ∈ K there exists
H ∈ K such that H −→ (G)1

2 (or H −→ (G)2
2).

Known results for Ramsey classes deal with “rich” classes of graphs. For
example we have

Theorem. The class GRA of all fnite graphs is both vertex- and edge-
Ramsey.

Theorem. For any k ≥ 2 is the class FORB(Kk) of all Kk-free graphs both
vertex- and edge-Ramsey.

Theorem. The class BIP of all bipartite graphs is edge-Ramsey (and obvi-
ously not vertex-Ramsey).

(For these classical results, see, e.g., the survey [2].)
By specializing to more structures classes of graphs we get several inter-

esting results and problems. For example we have:

Theorem. The class INT of all interval graphs s vertex-Ramsey but not
edge-Ramsey.

The class UNIINT of all unit interval graphs is both vertex-Ramsey and
edge-Ramsey.

Theorem. The class PERFECT of all perfect graphs is vertex-Ramsey.
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It is my old problem to decide whether perfect graphs are edge-Ramsey
class. This is an open problem even after the solution of Perfect Graph
conjecture (by Chudnovsky, Robertson, Seymour and Thomas).

The classes of bounded degree graphs (and cubic graphs in particular) fail
to be Ramsey. However the class CLAW of all claw free graphs (prominently
treated in this volume) is interesting in this context:

Both principal building clases of the class CLAW, namely the class LINE
of of all line graphs and the class 2IND of all graphs with their independence
number ≤ 2, are vertex-Ramsey. One should note that while the class LINE
fails to be edge-Ramsey, the class 2IND is both vertex- and edge-Ramsey.
However it follows from the Chudnovsky–Seymour characterization of the
class CLAW that this class fails to be even vertex-Ramsey. Are there only
finitely many such examples? More exactly: Is it true that, with finitely
many exceptions, for every claw free graph G there exists a claw free graph
H such that H −→ (G)1

2?
Let us finish this extended abstract (the proofs of which will of course

appear elsewhere) by mentioning the class TRIANG of triangulated (or rigid
circuit graphs). Here the situation is surprisingly open: The class TRIANG
is known to be neither vertex- nor edge-Ramsey. The difficulty of treating
this example may be related to the above problem for the class PERFECT.

References

[1] R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey theory. John
Wiley and Sons, 1980.

[2] J. Nešetřil, Ramsey Theory. In: Handbook of Combinatorics (ed. R.
L. Graham, M. Grötschel, L. Lovász), North-Holland, 1995, pp. 1331–
1403.
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Stable properties and around

Zdeněk Ryjáček

Západočeská univerzita, Plzeň
ryjacek@kma.zcu.cz

For a claw-free graph G, cl(G) denotes its closure (obtained by local
completions at locally connected vertices). A class of graphs C is said to
be stable under the closure if G ∈ C ⇒ cl(G) ∈ C. A property P is said to
be stable in a stable class C if, for any G ∈ C, G has P ⇔ cl(G) has P . A
graph invariant π is said to be stable in a stable class C if, for any G ∈ C,
π(G) = π(cl(G)). In the talk we survey known results on stability of graph
properties under cl(G) and show some applications of closure techniques using
the concept of stability. We also show some variations of the closure concept
and the respective stability results. As a recent application it is shown (joint
work with Petr Vrána) that every 7-connected claw-free graph is Hamilton-
connected.

The following table summarizes known results on stability of graph prop-
erties under cl(G).

Property / invariant Stable Connectivity
Circumference YES 1
Hamiltonicity YES 1
Having a 2-factor with ≤ k components YES 1
Minimum number of components in a 2-factor YES 1
Having a cycle cover with ≤ k cycles YES 1
Minimum number of cycles in a cycle cover YES 1
(Vertex) pancyclicity NO any κ ≥ 2
(Full) cycle extendability NO any κ ≥ 2
Length of a longest path YES 1
Traceability YES 1
Having a path factor with ≤ k components
Min. number of components in a path factor

YES
YES

1
1

[Ishizuka]

Having a path cover with ≤ k paths
Minimum number of paths in a path cover

YES
YES

1
1

[Ishizuka]

NO 3
Homogeneous traceability ??? 4 ≤ κ ≤ 6

YES 7
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NO 3
Hamilton-connectedness ??? 4 ≤ κ ≤ 6

YES 7 [Z.R., Vrána]
NO 1

Having a P3-factor ??? 2
YES 3 [Kaneko]

Flower property YES 1
Hamiltonian index YES 1

Having hamiltonian prism YES 1 [Čada]
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Closures, cycles and paths

Ingo Schiermeyer

TU Freiberg
schierme@math.tu-freiberg.de

(joint work with Arnfried Kemnitz, Jochen Harant and Akira Saito)

In 1960 Ore proved the following theorem: Let G be a graph of order n.
If d(u) + d(v) ≥ n for every pair of nonadjacent vertices u and v, then G is
hamiltonian. Since then for several other graph properties similar sufficient
degree conditions have been obtained, so called “Ore-type degree conditions”.
In 2000, Faudree, Saito, Schelp and Schiermeyer strengthened Ore’s theorem
as follows: They determined the maximum number of pairs of nonadjacent
vertices that can have degree sum less than n (i.e. violate Ore’s condition)
but still imply that the graph is hamiltonian. In this talk we will show that
for some other graph properties the corresponding Ore-type degree conditions
can be strengthened as well. These graph properties include traceable graphs,
hamiltonian connected graphs, k-leaf connected graphs, pancyclic graphs and
graphs having a 2-factor with two components. Graph closures are computed
to show these results.
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Distance regular square of distance regular
graph

Vladimı́r Vetchý

Univerzita obrany, Brno
vladimir.vetchy@unob.cz

Given an undirected graph G = (X,E) of diameter D we define Rk =
{(x, y); d(x, y) = k}, where d(x, y) is the distance from the vertex x to the
vertex y in the standard graph metric. If (X,R) gives rise to an association
scheme, the graph G is called distance regular.

Let G = (X,E) be an undirected graph without loops and multiple edges.
The second power (or square of G) is the graph G2 = (X,E ′) with the same
vertex set X and in which mutually different vertices are adjacent if and only
if there is at least one path of the length 1 or 2 in G between them.

The necessary conditions for G to have the square G2 distance regular are
found and some constructions of those graphs are solved for distance regular
graphs of diameter D = 3 and for distance regular bigraphs of diameter
D = 3, 4, 5, 6 and 7.
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